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INTRODUCTION 

 
 Let X be a nonempty set. A mapping d : X X  ! Rm is called a vector-valued metric on X if the following 
properties are satis ed: 
 

(1) d(x; y)   0 for each x; y 2 X; if d(x; y) = 0, then x = y;  
(2) d(x; y) = d(y; x) for each x; y 2 X;  
(3) d(x; y)   d(x; z) + d(z; y) for each x; y; z 2 X.  

 
 A set X equipped with a vector-valued metric d is called a generalized metric space and denoted by (X; d). By 
Mm;m(R+) we mean that the set of all m m matrices with positive elements. We denote by the zero matrix, and by I 
the identity m m matrix. Let A 2 Mm;m(R+), A is said to be convergent to zero if and only if An  ! 0 as n  ! 1 (for more 
details see [7]). 
 Let ; 2 Rm, = ( 1; 2; ; n), = ( 1; 2; ; n), and c 2 R. By (resp. < ) we mean that i i (resp. i < i) for each 1 i m, and by c 
(resp. < c) for 1 i m. 
Notice that for the proof of the main results, we need the following equivalent statements 
 

(1) A is convergent towards zero;  
(2) An  ! 0 as n  ! 1;  
(3) The eigenvalues of A are in the open uint disc, that is, j j < 1, for each  2 C with det(A   I) = 0;  
(4) The matrix I  A is nonsingular and  

(I  A) 1 = I + A +   + An +   ; 
(5) Anq  ! 0 and qAn  ! 0 as n  ! 1, for each q 2 Rm. 
 
 Where the proof of the above statements are the classical results in matrix analysis (for more details see [1], 
[5], and [6]). 
 De nition 1.1 ([3]). Let (X; ) be a partially ordered set and F : X X  ! X. Mapping F is said to be has the mixed 
monotone property if F (x; y) is monotone nondecreasing in x and is monotone nonincreasing in y, that is, for every 
x; y 2 X, 
 

(i) for each x1; x2 2 X, if x1   x2, then F (x1; y)   F (x2; y);  
(ii) for each y1; y2 2 X, if y1   y2, then F (x1; y)   F (x2; y).  
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 Let (X; ) be a partially ordered set and d be a metric on X such that (X; d) is a complete metric space. The 
product space X X is endowed with the following partial order: 
 for (x; y); (u; v) 2 X  X; (u; v)   (x; y) , x   u;  y   v: 
 De nition 1.2 ([3]). Let (X;  ) be a partially ordered set and F : X   X  ! X. An element (x; y) 2 
 X  X is said to be a coupled  xed point of the mapping F , if F (x; y) = x and F (y; x) = y. 
 Gnana Bhaskar and Lakshmikantham in [3], proved the following important Theorem: 
 Theorem 1.3. [3, Theorem 2.1]Let (X; ) be a partially ordered set and suppose that there exists a metric d on X 
such that (X; d) is a complete metric space. Let F : X X ! X be a continuous mapping having the mixed monotone 
property on X. Assume that there exists a k 2 [0; 1) with 
 

d(F (x; y); F (u; v)) 

k 

[d(x; u); d(y; v)]; 

 

  

2  

for all x   u and y   v. If there exist two elements x0; y0 2 X with  

x0   F (x0; y0) and  y0   F (x0; y0):  
Then there exist x; y 2 X such that    

x = F (x; y) and  y = F (y; x):  
De nition 1.4. An element (x; y) 2 X  X is called 

 
 (1) a coupled coincidence point of mappings F : X X ! X and g : X ! X if g(x) = F (x; y) and g(y) = F (y; x), and 
(gx; gy) is called a coupled point of coincidence. 
 (2) a common coupled xed point of mappings F : X X ! X and g : X ! X if x = g(x) = F (x; y) and y = g(y) = F (y; 
x). 
 
 De nition 1.5. (Let (X; ) be a partially ordered set and F : X X ! X and g : X ! X be two self mappings. F has the 
mixed g-monotone property if F is monotone g-non-decreasing in its rst argument and is monotone g-non-
increasing in its second argument, that is, if for all x1; x2 2 X, gx1 gx2 implies F (x1; y) F (x2; y) for any y 2 X, and for 
all y1; y2 2 X, gy1 gy2 implies F (x; y1) F (x; y2) for any x 2 X. 
 De nition 1.6. Let X be a non-empty set. We say that the mappings F : X X ! X and g : X ! X are commutative if 
g(F (x; y)) = F (gx; gy), for all x; y 2 X. 
   
Main Results 
 Theorem 2.1. Let (X; ) be partial ordered Banach space, and F : X X ! X and g : X ! X . and F mapping having 
the mixed g monotone property on X. Assume that there exists A 2 Mm m(R+); A 6= I be a nonzero matrix 
converging to zero whit: 

(2.1) jj(F (x; y)  F (u; v))jj  A[jjgx  gujj + jjgy  gvjj]; 
 for all x; y; u; v 2 X for which g(x) g(u) and g(v) g(y). Suppose that F (X X) g(X), g is sequentially continuous 
and commutes with F and also suppose either F is continuous or X has the following property: 
 
(I) if a non-decreasing fxng ! x, then xn   x, for all n.  
(II) if a non-decreasing fyng ! y, then y   yn, for all n. 
 
 If there exist x0; y0 2 X such that g(x0) F (x0; y0) and g(y0) such that g(x) = F (x; y) and g(y) = F (y; x); that is, 
F and g have 
 Proof. Let x0; y0 2 X with g(x0) F (x0; y0) = x1 and g(y0) F (y0; x0) = g(x1). Suppose that g(x2) = F (x1; y1) and g(y2) 

= F (y1; x1). Continuing this process, we have g(xn+1) = F (xn; yn) and F (yn; xn) = g(xn+1) for all n 0: Thus g(xn) g(xn+1; 

and g(yn+1): Therefore the g-monotone property of F implies 

 
g(xn+1) = F (xn; yn)   F (xn; yn); and F (yn; xn) = g(yn+1): 
 
Thus F (xn+1; yn)   F (xn+1; yn+1) = g(xn+2), g(yn+2) = F (yn+1; xn+1)   F (yn+1; xn): 
Then we have g(xn+1)   g(xn+2) and g(yn+2)   g(yn+1). Therefore 
g(x0)   g(x1)   g(x2) g(xn)   g(xn+1) ; 
and 
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g(y0)   g(y1)   g(y2) g(yn)   g(yn+1) : 
 

We show that sequences fg(xn)g and fg(yn)g are Cauchy: 

jjg(xn)  g(xn+1)jj =  jjF (xn  1; yn  1)  F (xn; yn)jj  

   A  

 

 

   

[jjg(xn  1)  g(xn)jj + jjg(yn  1)  g(yn)jj] 

 

  2   

   A2  

 

 

    

  [jjg(xn  2)  g(xn  1)jj + jjg(yn  2)  g(yn  1)jj] 

 

  2   

    

   An  

(2.2)  

     

[jjg(x0)  g(x1)jj + jjg(y0)  g(y1)jj]: 

 

 2    

Similarly           

jjg(yn)  g(yn+1)jj =  jjF (yn  1; xn  1)  F (yn; xn)jj  

 A[jjg(yn  1)  g(yn)jj  jjg(xn  1)  g(xn)jj]  

   A  

 

 

  

[jjg(xn  1)  g(xn)jj + jjg(yn  1)  g(yn)jj] 

 

  2  

   A2  

 

 

  

 [jjg(yn  2)  g(yn  1)jj + jjg(xn  2)  g(xn  1)jj] 

 

  2  

    

   An  

(2.3)  

  

[jjg(y0)  g(y1)jj + jjg(x0)  g(x1)jj]: 

 
 2  

 

Together with (2.2) and (2.3) we have 
 

jjg(xn)  g(xn+1)jj + jjg(yn)  g(yn+1)jj  An[jjg(x0)  g(x1)jj + jjg(y0)  g(y1)jj]: 

  
For n > m, we have  

jjg(xn)  g(xm)jj +  jjg(yn)  g(ym)jj 
 jjg(xn)  g(xn  1)jj + jjg(yn)  g(yn  1)jj + ::: + jjg(xm)  g(xm+1)jj 

 +jjg(xm)  g(xm+1)jj + jjg(ym)  g(ym+1)jj 
 (An  1 + An  2 + :::Am)[jjg(x0)  g(x1)jj + jjg(y0)  g(y1)jj] 

(2.4) Am(I  A) 1[jjg(x0)  g(x1)jj + jjg(y0)  g(y1)jj: 

Thus sequences fg(xn)g and fg(yn)g are Cauchy 

 
Since X is Banach algebra then these sequence are convergence. Thus there exists x; y 2 X such that 
 
lim g(xn) = x; and  lim g(yn) = y: 
n!1 n!1 
By continuity of g, limn!1 g(g(xn+1) = g(x) and limn!1 g(g(yn+1) = g(y), and by commutativity of F and g, we have 
g(g(xn+1) = g(F (xn; yn)) = F (g(xn); g(yn)); 
and 
g(g(yn+1)) = g(F (yn; xn)) = F (g(yn); g(xn)): 
Now we show that F (x; y) = g(x) and F (y; x) = g(y): 
Frits case: Let F be continuous. 
 

g(x) = lim g(g(xn+1)) = lim F (g(xn); g(yn)) = F ( lim g(xn); lim g(yn)) = F (x; y); 

n!1 n!1 n!1 n!1  
and     

g(y) = lim g(g(yn+1)) = lim F (g(yn); g(xn)) = F ( lim g(yn); lim g(xn)) = F (y; x): 

n!1 n!1 n!1 n!1  

Second case: Now, suppose that (I) and (II) hold. Since g(xn) ! x and g(yn) ! y; then by (I) and (II), g(xn) x and y g(yn) for all n. 
Thus 
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jjg(x)  F (x; y)jj jjg(x)  g(g(xn+1))jj + jjg(g(xn+1))  F (x; y)jj  

 = jjg(x)  g(g(xn+1))jj + jjF (g(xn); g(yn))  F (x; y)jj  

   A  

(2.5)  jjg(x)  g(g(xn+1)jj + 

 

[jjg(g(xn))  g(x)jj + jjg(g(yn)  g(y)jj]: 

 

2  

 
Hence, take the limit of both sides as n ! 1; we have jjg(x)  F (x; y)jj  0: Thus g(x) = F (x; y) and 
 

similarly g(y) = F (y; x):  

Theorem 2.2. Under the hypothesis of Theorem 2.1, suppose that for every (x; y); (x0; y0) 2 X   X; 

 
there exists a couple (u; v) 2 X X such that (F (u; v); F (v; u)) and (F (x0; y0); F (y0; x0)): Then F and g have a unique 
couple common xed point, in other word, there exists a unique (x; y) 2 X X such that x = g(x) = F (x; y), and y = g(y) 
= F (y; x). 
Proof. Existence of the set of coupled coincidence points is due to theorem 2.1. Let (x; y); (x0; y 0) 2 X X; be the 
coupled coincidence points, that is g(x) = F (x; y); g(y) = F (y; x) and g(x0) = F (x0; y0); F (y0; x0) = g(y0): By 
assumption, there is a couple (u; v) 2 X X such that (F (u; v); F (v; u)) is comparable to (F (x; y); F (y; x)) and (F (x0; 
y0); F (y0; x0)): Set u0 = u; v0 = v and choose u1; v1 2 X with g(u1) = 
F (u0; v0); g(v1) = F (v0; u0): 
 
Similar to the proof of theorem 2.1, we construct the sequences fg(un)g and fg(vn)g in the way that 
g(xn+1 = F (un; vn); g(vn+1 = F (vn; un). Similarly we can construct the the sequences fg(xn)g, fg(yn)g; fg(x0

n)g and 
fg(yn

0)g: 
 
x0 = x ) g(xn+1) = F (xn; yn); 
y0 = y ) g(yn+1) = F (yn; xn); 
x0

0 = x0 ) g(x0
n+1) = F (x0

n; yn
0); 

and 
y0

0 = y0 ) g(yn
0
+1) = F (yn

0; x0
n): 

 Since (g(x); g(y)) = (F (x; y); F (y; x)) = (g(x1); g(y1)) and (F (u; v); F (v; u)) = (g(u1); g(v1)) are com-parable, then 
g(x) g(u1) and g(v1) g(y): Similarly (g(x); g(y)) and (g(u1); g(v1)) are comparable, that is g(x) g(un) and g(vn) g(y), for 
n 1, 
A 
jjg(x)  g(un+1)jj = jjF (x; y)  F (un; vn)jj  2 [jjg(x)  g(un)jj + jjg(y)  g(vn)jj]; 
and 
A 
jjg(y)  g(vn+1)jj = jjF (y; x)  F (vn; un)jj  2 [jjg(y)  g(vn)jj + jjg(x)  g(un)jj]: 
Which imply that 
jjg(x)  g(un+1)jj + jjg(y)  g(vn+1)jj  A[jjg(x)  g(un)jj + jjg(y)  g(vn)jj]: 
Thus 
jjg(x)  g(un+1)jj + jjg(y)  g(vn+1)jj  An[jjg(x)  g(u1)jj + jjg(y)  g(v1)jj]: 
If n ! 1 then An ! 0, then jjg(x)  g(un+1)jj + jjg(y)  g(vn+1)jj ! 0. Therefore 
 

nlim jjg(x)  g(un+1)jj = 0; and nlim jjg(y)  g(vn+1)jj = 0:  

Similarly 

!1        !1         

                 

lim g(x0) 

 

g(u 

n+1 

) 

jj 

= 0; and lim g(y0) 

 

g(v 

n+1 

) 

jj 

= 0:  

n 

!1 

jj   n 

!1 

jj     

                

Thus 
jjg(x)  g(x0)jj  jjg(x)  g(un+1)jj + jjg(un+1)  g(x0)jj ! 0 as n ! 1; 
jjg(y)  g(y0)jj  jjg(y)  g(vn+1)jj + jjg(vn+1)  g(y0)jj ! 0 as n ! 1: 
Therefore g(x) = g(x0) and g(y) = g(y0). By of commutativity of F and g with g(x) = F (x; y) and g(y) = F (y; x), we get 
g(g(x)) = g(F (x; y)) = F (g(x); g(y)); 
and 
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g(g(y)) = g(F (y; x)) = F (g(y); g(x)): 
 
 By letting t = g(x) and s = g(y), then g(t) = F (t; s) and g(s) = F (s; t). This means that (t; s) is coupled 
coincidence point, also g(x) = g(t) and g(y) = g(s), where t = x0 and s = y0. 
Since t = g(x) and s = g(y), then g(t) = t and g(s) = s. So (t; s) is coupled common xed point of F and g. 
Uniqueness, follows form g(x) = g(x0) and g(y) = g(y0). Indeed, for another coupled common  xed 
 

  
 

 

point (t; s) of F and g, then t = g(t) = g(t) = t and s = g(s) = g(s) = s:  

 
We now present some results in C -algebras. 
 

Theorem 2.3. Let A be a unital C -algebra and let F : 

A A   A  A
2   ! 

 

A 

be a holomorphic map  

that satis es the conditions F (0; 0) = 0, @F (0; 0) = id , 

  2 
F (0; 0) = 0, and 

 
@F (0; 0) = 0, @ F (0; 0) = 0, @  

 

@2F 

   @x  A @y @x2   @y2  

 

(0; 0) = 0. Then every (a; b) 

2 

 

A A \ 

Z( ) is a coupled  xed point for F . Furthermore (a ; b ) 

 

   

 @y@x   A  A         

is a coupled  xed point of F . 
 Proof. Since every unital C -algebra is semisimple ([8, Corollary 3.2.13]), so by Theorem 3.1 of [9], every (a; b) 
2 A A \ Z(A A) is a coupled xed point for F . Now, suppose x = (a; b); y = (a0; b0) 2 A A. Since jjxjj = jjx jj, therefore if x 
2 A A T ZA A then x 2 A A T ZA A. As well as, (x y) = y x = xy = (yx ) that is x y = yx . 
 Theorem 2.4. Let A be a unital C -algebra, let F : A A A A ! A, and let g : A ! A such that F has the mixed g-
monotone property. Assume g is biholomorphic function from A into A such that g(0) = 0 and g0(0) = idA. Then g is -
preserving on A T ZA. 

Proof. Let x 2  A ZA,by theorem (2.3) x  2  A ZA and theorem of [10], g(  A ZA) =  A ZA,  

= g(x) 

 T T T 

 

we have g(x ) = x 
T   
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